摘要:22.解:(Ⅰ)直角梯形ABCD的面积是 M底面. ∴ 四棱锥S-ABCD的体积是 M底面. (Ⅱ)延长BA.CD相交于点E.连结SE.则SE是所求二面角的棱. ∵ AD∥BC.BC = 2AD. ∴ EA = AB = SA.∴ SE⊥SB. ∵ SA⊥面ABCD.得面SEB⊥面EBC.EB是交线. 又BC⊥EB.∴ BC⊥面SEB.故SB是CS在面SEB上的射影.∴ CS⊥SE. 所以∠BSC是所求二面角的平面角. ∵ .BC =1.BC⊥SB. ∴ tg∠BSC . 即所求二面角的正切值为.
网址:http://m.1010jiajiao.com/timu_id_4416389[举报]
本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分.
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
,点E,F分别为线段AB,CD的中点,则EF=
.
(2)(选修4-4,坐标系与参数方程)在极坐标系(ρ,θ)(0≤θ≤2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
(3)(选修4-1,不等式选讲)已知函数f(x)=|x-a|.若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a的值为
查看习题详情和答案>>
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
a |
2 |
a |
2 |
a |
2 |
(2)(选修4-4,坐标系与参数方程)在极坐标系(ρ,θ)(0≤θ≤2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
(
,
)
2 |
3π |
4 |
(
,
)
.2 |
3π |
4 |
(3)(选修4-1,不等式选讲)已知函数f(x)=|x-a|.若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a的值为
a=2
a=2
.本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分.
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,CD的中点,则EF=________.
(2)(选修4-4,坐标系与参数方程)在极坐标系(ρ,θ)(0≤θ≤2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为________.
(3)(选修4-1,不等式选讲)已知函数f(x)=|x-a|.若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a的值为________.
查看习题详情和答案>>
本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分.
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,CD的中点,则EF= .
(2)(选修4-4,坐标系与参数方程)在极坐标系(ρ,θ)(0≤θ≤2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为 .
(3)(选修4-1,不等式选讲)已知函数f(x)=|x-a|.若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a的值为 .
查看习题详情和答案>>
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,CD的中点,则EF= .
(2)(选修4-4,坐标系与参数方程)在极坐标系(ρ,θ)(0≤θ≤2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为 .
(3)(选修4-1,不等式选讲)已知函数f(x)=|x-a|.若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a的值为 .
查看习题详情和答案>>
|