摘要: 已知动点P与平面上两定点连线的斜率的积为定值. (Ⅰ)试求动点P的轨迹方程C. (Ⅱ)设直线与曲线C交于M.N两点.当|MN|=时.求直线l的方程.
网址:http://m.1010jiajiao.com/timu_id_4411944[举报]
(本小题满分10分)选修4-4坐标系与参数方程
在平面直角坐标系中,取原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为
,直线C2的参数方程为:
(t为参数)
(I )求曲线C1的直角坐标方程,曲线C2的普通方程.
(II)先将曲线C1上所有的点向左平移1个单位长度,再把图象上所有点的横坐标伸长到原来的
倍得到曲线C3
P为曲线C3上一动点,求点P到直线C2距离的最小值,并求出相应的P点的坐标.
查看习题详情和答案>>
(本小题满分10分)
在平面直角坐标系xOy中,已知点
,P是动点,且三角形POA的三边所在直线的斜
率满足kOP+kOA=kPA.
(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且
,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足
?若存在,求出点P的坐标;若不存在,说明理由.
![]()
查看习题详情和答案>>
解答时应写出文字说明,证明过程或演算步骤.
A选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B选修4-2:矩阵与变换
已知二阶矩阵A=
|
|
|
C选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
|
| π |
| 4 |
| 2 |
P为曲线C上的动点,求点P到直线l距离的最大值.
D选修4-5:不等式选讲
若正数a,b,c满足a+b+c=1,求
| 1 |
| 3a+2 |
| 1 |
| 3b+2 |
| 1 |
| 3c+2 |
选做题本题包括A,B,C,D四小题,请选定其中 两题 作答,每小题10分,共计20分,
解答时应写出文字说明,证明过程或演算步骤.
A选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B选修4-2:矩阵与变换
已知二阶矩阵A=
,矩阵A属于特征值λ1=-1的一个特征向量为
,属于特征值λ2=4的一个特征向量为
.求矩阵A.
C选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.点
P为曲线C上的动点,求点P到直线l距离的最大值.
D选修4-5:不等式选讲
若正数a,b,c满足a+b+c=1,求
的最小值.
查看习题详情和答案>>
解答时应写出文字说明,证明过程或演算步骤.
A选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B选修4-2:矩阵与变换
已知二阶矩阵A=
C选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
P为曲线C上的动点,求点P到直线l距离的最大值.
D选修4-5:不等式选讲
若正数a,b,c满足a+b+c=1,求