网址:http://m.1010jiajiao.com/timu_id_439781[举报]
一、选择题:本大题共10小题,每小题5分,共50分。
1.C 2.D 3.A 4.C 5.A 6.D 7.D 8.B 9.C 10.B
二、填空题:本答题共6小题,每小题4分,共24分。
11.= 22 12. 13.594 14.m=
15. 16.1,3
三、解答题:本大题共6小题,共76分。
17.(本小题满分12分)
解:(1)将函数(ω>0)的图象按向量平移,平移后的图象所对应的解析式为,由图象知,,所以.
∴所求解析式为 (6分)
(2)∵sin(2α+)=sin2α?cos+cos2αsin=sinαcosα+(cos2α-sin2α)
== (10分)
将tanα=代入得
sin(2α+)== (12分)
另解:由tanα=得:cosα=,sinα=。? (10分)
∴sin(2α+)=sin2α?cos+cos2α?sin=sinαcosα+ (2cos2α-1)= = (12分)
18.(本小题满分12分)
解:设开关JA,JB ,JC ,JD 能够闭合的事件依次为A、B、C、D,则P(A)=P(D)=0.7,P(B)=P(C)=0.8
(1)P(B?C)=P(B)? P(c)=0.8×0.8=0.64 (6分)
(2)JA不能工作的概率为
JD不能工作的概率为 (8分)
(10分)
所以整条线路能正常工作的概率为0.9676 (12分)
答:9月份这段线路能正常工作的概率为0.9676。 (14分)
19.(本小题满分12分)
解:(1)∵CF⊥平面ABC,∴AC是AF在平面ABC的射影
∵△ABC为边长是的等边三角形,M为AC中点
∴BM⊥AC,
∴AF⊥BM (3分)
(2)延长FE、CB交于一点N,则AN是平面AEF与平面ABC的交线
∵BE⊥平面ABC, CF⊥平面ABC
∴BE∥CF,∵CF=AB = 2BE,∴BE是△FCN的中位线B是CN的中点,
∴AN∥BM, AN⊥AC
∴AN⊥FA,∴∠FAC为所求二面角的平面角 (6分)
∵CF=AC, ∴∠FAC=45° (7分)
(3)V=VF-CAN-VE-ABN (9分)
=×a-2a×a×sin1200× (11分)
=-= (12分)
注:第(2)问利用指明S/,S也可;第(3)问可用分割的方法,相应给分。
20.(本小题满分12分)
解(1)∵f′(x)=-x2+4ax-3a2=-(x-3a)(x-a),由f′(x)>0得:a<x<3a
由f′(x)<0得,x<a或x>3a,
则函数f(x)的单调递增区间为(a,3a),单调递减区间为(-∞,a)和(3a,+∞)列表如下:
X
(-∞,a)
a
(a, 3a)
3a
(3a,+ ∞)
f′(x)
―
0
+
0
―
f(x)
ㄋ
-a3+b
ㄊ
b
ㄋ
∴函数f(x)的极大值为b,极小值为-a3+b (6分)
(2)上单调递减,
因此
∵不等式|f′(x)|≤a恒成立,
即a的取值范围是 (12分)
21.(本小题满分14分)
(1)由,得, (2分)
, (4分)
又成等差数列,
(5分)
即:
即:,解之得:或, (6分)
经检验,是增根,∴. (7分)
(2)证明:
(9分)
时等号成立 (10分)
此时
即:。 (14分)
22.(本小题满分14分)
解(1)由双曲线C:知F(2,0), 第一、三象限的渐近线:
设点P,∵FP⊥,∴,∴x=,∴P, A
,,∴=
(2)由得:,
设,,M、N的中点为H
则,
,,,
即H,
则线段MN的垂直平分线为:,
将点B(0,-1),的坐标代入,化简得:,
则由得:,解之得或,
又,所以,
故m的取值范围是。
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线,
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数和,不等式恒成立,试求实数的取值范围.
在极坐标系下,已知圆O:和直线,
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数和,不等式恒成立,试求实数的取值范围.