摘要:(2) .若在上最大值为0.最小值为-3.求与的值. 文科数学答案
网址:http://m.1010jiajiao.com/timu_id_432385[举报]
已知
,若函数f(x)的图象经过点(0,1)和
.
(1)求m、n的值;
(2)用五点法画出f(x)在一个周期内的大致图象.
(3)若函数g(x)=af(x)+1在区间
上的最大值与最小值之和为3,求a的值.
查看习题详情和答案>>
(1)求m、n的值;
(2)用五点法画出f(x)在一个周期内的大致图象.
(3)若函数g(x)=af(x)+1在区间
探究函数
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数
,(x>0)在区间(0,2)上递减,则在 上递增;
(2)当x= 时,
,(x>0)的最小值为 ;
(3)试用定义证明
,(x>0)在区间(0,2)上递减;
(4)函数
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
(5)解不等式
.
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)若函数
(2)当x= 时,
(3)试用定义证明
(4)函数
(5)解不等式
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。
已知点F(0,1),一动圆过点F且与圆x2+(y+1)2=8内切,
(1)求动圆圆心的轨迹C的方程;
(2)设点A(a,0),点P为曲线C上任一点,求点A到点P距离的最大值d(a);
(3)在0<a<1的条件下,设△POA的面积为s1(O是坐标原点,P是曲线C上横坐标为a的点),以d(a)为边长的正方形的面积为s2.若正数m满足s1≤
ms2,问m是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
查看习题详情和答案>>
(1)求动圆圆心的轨迹C的方程;
(2)设点A(a,0),点P为曲线C上任一点,求点A到点P距离的最大值d(a);
(3)在0<a<1的条件下,设△POA的面积为s1(O是坐标原点,P是曲线C上横坐标为a的点),以d(a)为边长的正方形的面积为s2.若正数m满足s1≤
| 1 | 4 |