摘要:当n≥2时.有 ②当①-②并整理得
网址:http://m.1010jiajiao.com/timu_id_430262[举报]
已知数列{an}和{bn}满足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),中λ为实数,n为正整数.
(1)当a3=0时,求λ的值;
(2)试判断数列{bn}是否为等比数列,并证明你的结论;
(3)设0<a<b,,Sn为数列{bn}的前n项和,是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
设二次函数f(x)=(k-4)x2+kx(k∈R),对任意实数x,有f(x)≤6x+2恒成立;数列{an}满足an+1=f(an).
(1)求函数f(x)的解析式;
(2)试写出一个区间(a,b),使得当an∈(a,b)时,an+1∈(a,b)且数列{an}是递增数列,并说明理由;
(3)已知a1=,是否存在非零整数λ,使得对任意n∈N*,都有-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,说明理由.
(本小题满分13分)
已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=.
(1)证明:数列{an}为等差数列;(2)记bn=+,求数列{bn}的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.