网址:http://m.1010jiajiao.com/timu_id_425831[举报]
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x |
10+x |
(3)又若B={x|
10-x |
10+x |
仔细阅读下面问题的解法:
设A=[0, 1],若不等式21-x-a>0在A上有解,求实数a的取值范围。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上单调递减,f(x)max =f(0)=2. ∴实数a的取值范围为a<2.
研究学习以上问题的解法,请解决下面的问题:
(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);
(3)若B ={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。
查看习题详情和答案>>仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|>2x+a-5},若A∩B≠Φ,求实数a的取值范围.
查看习题详情和答案>>
已知数列是首项为的等比数列,且满足.
(1) 求常数的值和数列的通项公式;
(2) 若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;
(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.
【解析】第一问中解:由得,,
又因为存在常数p使得数列为等比数列,
则即,所以p=1
故数列为首项是2,公比为2的等比数列,即.
此时也满足,则所求常数的值为1且
第二问中,解:由等比数列的性质得:
(i)当时,;
(ii) 当时,,
所以
第三问假设存在正整数n满足条件,则,
则(i)当时,
,
查看习题详情和答案>>
,,为常数,离心率为的双曲线:上的动点到两焦点的距离之和的最小值为,抛物线:的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线:(为负常数)上任意一点向抛物线引两条切线,切点分别为、,坐标原点恒在以为直径的圆内,求实数的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
第二问中,为,,,
故直线的方程为,即,
所以,同理可得:
借助于根与系数的关系得到即,是方程的两个不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
(Ⅱ)设为,,,
故直线的方程为,即,
所以,同理可得:,
即,是方程的两个不同的根,所以
由已知易得,即
查看习题详情和答案>>