网址:http://m.1010jiajiao.com/timu_id_425657[举报]
在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:
(1)选择题得满分(50分)的概率;
(2)选择题所得分数的数学期望。
【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为:
第二问中,依题意,该考生得分的范围为{35,40,45,50}
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
得分为40分的概率为:
同理求得,得分为45分的概率为:
得分为50分的概率为:
得到分布列和期望值。
解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为: …………5分
(2)依题意,该考生得分的范围为{35,40,45,50} …………6分
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为 …………7分
得分为40分的概率为: …………8分
同理求得,得分为45分的概率为:
…………9分
得分为50分的概率为:
…………10分
所以得分的分布列为
|
35 |
40 |
45 |
50 |
|
|
|
|
|
数学期望
查看习题详情和答案>>
一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每小时通过管道向所管辖区域供水
千吨.
(1)多少小时后,蓄水池存水量最少?
(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?
【解析】第一问中(1)设小时后,蓄水池有水
千吨.依题意,
当
,即
(小时)时,蓄水池的水量最少,只有1千吨
第二问依题意, 解得:
解:(1)设小时后,蓄水池有水
千吨.………………………………………1分
依题意,…………………………………………4分
当,即
(小时)时,蓄水池的水量最少,只有1千吨. ………2分
(2)依题意, ………………………………………………3分
解得:. …………………………………………………………………3分
所以,当天有8小时会出现供水紧张的情况
查看习题详情和答案>>
1+ax |
1-ax |
(Ⅰ)设关于x的方程求loga
t |
(x2-1)(7-x) |
(Ⅱ)当a=e,e为自然对数的底数)时,证明:
n |
![]() |
k=2 |
2-n-n2 | ||
|
(Ⅲ)当0<a≤
1 |
2 |
n |
![]() |
k=1 |
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
|
(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1 |
2 |
5 |
6 |
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.