摘要:(Ⅰ)证明:连结A1C.AC.AC和BD交于O.连结C1O.
网址:http://m.1010jiajiao.com/timu_id_425203[举报]
如图,已知半径为r的圆M的内接四边形ABCD的对角线AC和BD相互垂直且交点为P.
(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
+
=1(a>b>0)的内接四边形ABCD的对角线AC和BD相互垂直且交于点P.试提出一个由类比获得的猜想,并尝试给予证明或反例否定.
查看习题详情和答案>>
(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
x2 |
a2 |
y2 |
b2 |
已知四棱锥P-ABCD的底面是边长为4的正方形,PD⊥底面ABCD,PD=6,M,N分别为PB,AB的中点,设AC和BD相交于点O
(Ⅰ)证明:OM∥底面PAD;
(Ⅱ)若DF⊥PA且交PA于F点,证明DF⊥平面PAB;
(Ⅲ)求四面体D-MNB的体积 查看习题详情和答案>>
(Ⅰ)证明:OM∥底面PAD;
(Ⅱ)若DF⊥PA且交PA于F点,证明DF⊥平面PAB;
(Ⅲ)求四面体D-MNB的体积 查看习题详情和答案>>
选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
(1)(几何证明选讲选做题) 如图,平行四边形ABCD的对角线AC和BD交于点O,OE与BC和AB的延长线分别交于点E和F,若AB=2,BC=3,BF=1,则BE=
.
(2)(坐标系与参数方程选做题) 若直线l1:
(t为参数),
与直线l2:
(s为参数)垂直,则k=
查看习题详情和答案>>
(1)(几何证明选讲选做题) 如图,平行四边形ABCD的对角线AC和BD交于点O,OE与BC和AB的延长线分别交于点E和F,若AB=2,BC=3,BF=1,则BE=
3 |
4 |
3 |
4 |
(2)(坐标系与参数方程选做题) 若直线l1:
|
与直线l2:
|
-1
-1
.
(理)已知函数f(x)=
.
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
•
=0,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由. 查看习题详情和答案>>
ln(2-x2) |
|x+2|-2 |
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB |
AD |
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由. 查看习题详情和答案>>