摘要:又∵MD平面VNC ∴MD⊥AB∴∠MDC为二面角M-MAB-C的平面角.如图9―72
网址:http://m.1010jiajiao.com/timu_id_425171[举报]
如图,在矩形ABCD中,AB=
,BC=a,又PA⊥平面ABCD,PA=4.
(1)若在边BC上存在点Q,且使得PQ⊥QD,求a的取值范围;
(2)当BC边上存在唯一点Q,使PQ⊥QD时,求异面直线AQ与PD所成角的大小.
查看习题详情和答案>>
3 |
(1)若在边BC上存在点Q,且使得PQ⊥QD,求a的取值范围;
(2)当BC边上存在唯一点Q,使PQ⊥QD时,求异面直线AQ与PD所成角的大小.
如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=
PD.
(1)证明:PQ⊥平面DCQ;
(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.
查看习题详情和答案>>
1 | 2 |
(1)证明:PQ⊥平面DCQ;
(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.
(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且
=
.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.
查看习题详情和答案>>
PN |
NB |
1 |
3 |
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.