网址:http://m.1010jiajiao.com/timu_id_425169[举报]
1 |
x |
2 |
y |
xy |
1 | ||
|
1 |
x |
2 |
y |
|
1 |
x |
2 |
y |
2 |
2 |
若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:
分组 |
频数 |
频率 |
[-3, -2) |
|
0.10 |
[-2, -1) |
8 |
|
(1,2] |
|
0.50 |
(2,3] |
10 |
|
(3,4] |
|
|
合计 |
50 |
1.00 |
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。
【解析】(Ⅰ)
分组 |
频数 |
频率 |
[-3, -2) |
5 |
0.10 |
[-2, -1) |
8 |
0.16 |
(1,2] |
25 |
0.50 |
(2,3] |
10 |
0.2 |
(3,4] |
2 |
0.04 |
合计 |
50 |
1.00 |
(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.
(Ⅲ)由题可知不合格的概率为0.01,故可求得这批产品总共有2000,故合格的产品有1980件。
查看习题详情和答案>>
1 |
x |
2 |
y |
xy |
1 | ||
|
1 |
x |
2 |
y |
|
1 |
x |
2 |
y |
2 |
2 |
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r==,
故所求圆的方程为:+=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圆的方程为:+=2 ………………………12分
法二:由条件设所求圆的方程为:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圆的方程为:+=2 ………………………12分
其它方法相应给分
查看习题详情和答案>>
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
∴FG∥AA1,△AA1C∽△FGC,
⑤∵
∴FG=
1 |
2 |
1 |
2 |
1 |
2 |