摘要:设MN的中点为Q.则GQ⊥MN.即.
网址:http://m.1010jiajiao.com/timu_id_39601[举报]
如图,已知过原点O从x轴正方向出发逆时针旋转240°得到射线t,点A(x,y)在射线t上(x<0,y<0=,设|OA|=m,又知点B在射线y=0(x<0=上移动,设P为第三象限内的动点,若·=0,且·,·,||2成等差数列.
(1)试问点P的轨迹是什么曲线?
(2)已知直线l的斜率为,若直线l与曲线C有两个不同的交点M,N,设线段MN的中点为Q,求点Q的横坐标的取值范围.
查看习题详情和答案>>已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
第二问中,
假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
(Ⅱ) 假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得……② ……………………9分
则.
代入①式得,解得………………………………………12分
代入②式得,得.
综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是
查看习题详情和答案>>
已知椭圆E的右焦点F2与抛物线y2=4
x的焦点重合,对称轴为坐标轴,且经过点A(1,
).
(1)求椭圆E的方程;
(2)过点D(0,
)且斜率存在的直线l交椭圆E于M、N两点,线段MN的中点为Q,点B(-1,0),当l⊥QB时,求直线l的方程.
查看习题详情和答案>>
3 |
| ||
2 |
(1)求椭圆E的方程;
(2)过点D(0,
5 |
3 |