题目内容
已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以
,
又由于
所求椭圆C的标准方程为
第二问中,
假设存在这样的直线,设
,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线
符合题意;
(ii)下面仅考虑情形:
由,得,
,得
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以
,
又由于
所求椭圆C的标准方程为
(Ⅱ) 假设存在这样的直线,设
,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线
符合题意;
(ii)下面仅考虑情形:
由,得,
,得
……② ……………………9分
则.
代入①式得,解得………………………………………12分
代入②式得,得
.
综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是
【答案】
(Ⅰ)
(Ⅱ)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目