摘要:故所求抛物线的解析式为: -------8分
网址:http://m.1010jiajiao.com/timu_id_37841[举报]
在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E,F两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B
(1)求直线BC的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为⊙A与x轴的交点,求抛物线的解析式;
(3)问C点是否在所求的抛物线上? 查看习题详情和答案>>
(1)求直线BC的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为⊙A与x轴的交点,求抛物线的解析式;
(3)问C点是否在所求的抛物线上? 查看习题详情和答案>>
如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由. 查看习题详情和答案>>
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由. 查看习题详情和答案>>
如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标. 查看习题详情和答案>>
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标. 查看习题详情和答案>>
已知:抛物线y=-
x2-(m+3)x+m2-12与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,抛物线与y轴交于点C,OB=2OA.
(1)求抛物线的解析式;
(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中抛物线的顶点D;
(3)过(2)中的点E的直线y=
x+b与(1)中的抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为M′、N′,点P为线段MN上一点,点P的横坐标为t,过点P作平行于y轴的直线交(1)中所求抛物线于点Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出满足条件的t值;若不存在,请说明理由.
查看习题详情和答案>>
1 |
2 |
(1)求抛物线的解析式;
(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中抛物线的顶点D;
(3)过(2)中的点E的直线y=
1 |
4 |