摘要:13.[解析] 设扇形周长为.半径为.则弧长.扇形的面积是
网址:http://m.1010jiajiao.com/timu_id_370516[举报]
设函数
,若
为函数
的一个极值点,则下列图象不可能为
的图象是
![]()
【答案】D
【解析】设
,∴
,
又∴
为
的一个极值点,
∴
,即
,
∴
,
当
时,
,即对称轴所在直线方程为
;
当
时,
,即对称轴所在直线方程应大于1或小于-1.
查看习题详情和答案>>
设函数
.
(I)求
的单调区间;
(II)当0<a<2时,求函数
在区间
上的最小值.
【解析】第一问定义域为真数大于零,得到
.
.
令
,则
,所以
或
,得到结论。
第二问中,
(
).
.
因为0<a<2,所以
,
.令
可得
.
对参数讨论的得到最值。
所以函数
在
上为减函数,在
上为增函数.
(I)定义域为
. ………………………1分
.
令
,则
,所以
或
. ……………………3分
因为定义域为
,所以
.
令
,则
,所以
.
因为定义域为
,所以
. ………………………5分
所以函数的单调递增区间为
,
单调递减区间为
.
………………………7分
(II)
(
).
.
因为0<a<2,所以
,
.令
可得
.…………9分
所以函数
在
上为减函数,在
上为增函数.
①当
,即
时,
在区间
上,
在
上为减函数,在
上为增函数.
所以
. ………………………10分
②当
,即
时,
在区间
上为减函数.
所以
.
综上所述,当
时,
;
当
时,![]()
查看习题详情和答案>>