摘要:所以即点也在上.所以关于点P对称
网址:http://m.1010jiajiao.com/timu_id_36011[举报]
已知函数
(1)若函数的图象经过P(3,4)点,求a的值;
(2)比较大小,并写出比较过程;
(3)若,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .
解:⑴∵函数的图象经过∴,即. … 2分
又,所以. ………… 4分
⑵当时,;
当时,. ……………… 6分
因为,,
当时,在上为增函数,∵,∴.
即.当时,在上为减函数,
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
查看习题详情和答案>>
对于任意的复数z=x+yi(x,y∈R),定义运算P(z)=x2[cos(yπ)+isin(yπ)].
(1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均为整数},试用列举法写出集合A;
(2)若z=2+yi(y∈R),P(z)为纯虚数,求|z|的最小值;
(3)直线l:y=x-9上是否存在整点(x,y)(坐标x,y均为整数的点),使复数z=x+yi经运算P后,P(z)对应的点也在直线l上?若存在,求出所有的点;若不存在,请说明理由.
查看习题详情和答案>>
(1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均为整数},试用列举法写出集合A;
(2)若z=2+yi(y∈R),P(z)为纯虚数,求|z|的最小值;
(3)直线l:y=x-9上是否存在整点(x,y)(坐标x,y均为整数的点),使复数z=x+yi经运算P后,P(z)对应的点也在直线l上?若存在,求出所有的点;若不存在,请说明理由.