网址:http://m.1010jiajiao.com/timu_id_35199[举报]
如图,在四棱锥中,⊥底面,底面为正方形,,,分别是,的中点.
(I)求证:平面;
(II)求证:;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
【解析】第一问利用线面平行的判定定理,,得到
第二问中,利用,所以
又因为,,从而得
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明: 分别是的中点,
,. …4分
(Ⅱ)证明:四边形为正方形,.
, .
, ,
.,. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴
查看习题详情和答案>>
已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点.
(1)求证:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
【解析】(1)证:DE//BF即可;
(2)可以利用向量法根据二面角P-BF-C的余弦值为,确定高PD的值,即可求出四棱锥的体积.也可利用传统方法直接作出二面角的平面角,求高PD的值也可.在找平面角时,要考虑运用三垂线或逆定理.
查看习题详情和答案>>
如图,四棱柱中,平面,底面是边长为的正方形,侧棱.
(1)求三棱锥的体积;
(2)求直线与平面所成角的正弦值;
(3)若棱上存在一点,使得,当二面角的大小为时,求实数的值.
【解析】(1)在中,
. (3’)
(2)以点D为坐标原点,建立如图所示的空间直角坐标系,则
(4’)
,设平面的法向量为,
由得, (5’)
则,
. (7’)
(3)
设平面的法向量为,由得, (10’)
查看习题详情和答案>>