摘要:(2)若是椭圆的一个焦点.且.求椭圆的方程.
网址:http://m.1010jiajiao.com/timu_id_351738[举报]
椭圆G:
+
=1(a>b>0)的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
•
=0.
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
;
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| F1M |
| F2M |
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
| 2 |
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
| ||
| 3 |
椭圆C:
+
=1(a>b>0),直线y=k(x-1)经过椭圆C的一个焦点与其相交于点M,N,且点A(1,
)在椭圆C上.
(I)求椭圆C的方程;
(II)若线段MN的垂直平分线与x轴相交于点P,问:在x轴上是否存在一个定点Q,使得
为定值?若存在,求出点Q的坐标和
的值;若不存在,说明理由.
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
(I)求椭圆C的方程;
(II)若线段MN的垂直平分线与x轴相交于点P,问:在x轴上是否存在一个定点Q,使得
| |PQ| |
| |MN| |
| |PQ| |
| |MN| |
椭圆
+
=1(a>b>0)左右两焦点分别为F1,F2,且离心率e=
;
(1)设E是直线y=x+2与椭圆的一个交点,求|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,1),是否存在斜率为k的直线l与(1)中的椭圆交与不同的两点A,B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由.
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
(1)设E是直线y=x+2与椭圆的一个交点,求|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,1),是否存在斜率为k的直线l与(1)中的椭圆交与不同的两点A,B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由.