摘要:解:(Ⅰ)..
网址:http://m.1010jiajiao.com/timu_id_34815[举报]
先解答(Ⅰ),再通过结构类比解答(Ⅱ):
(Ⅰ)求证:tan(x+
)=
;
(Ⅱ) 设x∈R且f(x+π)=
,试问:f(x)是周期函数吗?证明你的结论.
查看习题详情和答案>>
(Ⅰ)求证:tan(x+
π |
4 |
1+tanx |
1-tanx |
(Ⅱ) 设x∈R且f(x+π)=
1+f(x) |
1-f(x) |
(Ⅰ)阅读理解:
①对于任意正实数a,b,∵(
-
)2≥0, ∴a-2
+b≥0,∴a+b≥2
只有当a=b时,等号成立.
②结论:在a+b≥2
(a,b均为正实数)中,若ab为定值p,则a+b≥2
,
只有当a=b时,a+b有最小值2
.
(Ⅱ)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)
①若m>0,只有当m= 时,m+
有最小值 .
②若m>1,只有当m= 时,2m+
有最小值 .
(Ⅲ)探索应用:
学校要建一个面积为392m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图).问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值.
查看习题详情和答案>>
①对于任意正实数a,b,∵(
a |
b |
ab |
ab |
只有当a=b时,等号成立.
②结论:在a+b≥2
ab |
p |
只有当a=b时,a+b有最小值2
p |
(Ⅱ)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)
①若m>0,只有当m=
1 |
m |
②若m>1,只有当m=
8 |
m-1 |
(Ⅲ)探索应用:
学校要建一个面积为392m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图).问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值.
解:因为有负根,所以在y轴左侧有交点,因此
某种产品的广告支出x与销售额y(单位:百万元)之间有如下的对应关系
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)假定x与y之间具有线性相关关系,求回归直线方程.
(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?
查看习题详情和答案>>解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
现有5名同学的物理和数学成绩如下表:
物理 | 64 | 61 | 78 | 65 | 71 |
数学 | 66 | 63 | 88 | 76 | 73 |
(1)画出散点图;
(2)若与具有线性相关关系,试求变量对的回归方程并求变量对的回归方程.
查看习题详情和答案>>