摘要:在中..解得.
网址:http://m.1010jiajiao.com/timu_id_34558[举报]
在中,,分别是角所对边的长,,且
(1)求的面积;
(2)若,求角C.
【解析】第一问中,由又∵∴∴的面积为
第二问中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C为内角 ∴
解:(1) ………………2分
又∵∴ ……………………4分
∴的面积为 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C为内角 ∴ ……………………12分
另解:由正弦定理得: ∴ 又 ∴
查看习题详情和答案>>
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
提示:可参考试卷第一页的公式.
查看习题详情和答案>>
男性 | 女性 | 合计 | |
反感 | 10 | 6 6 |
16 16 |
不反感 | 6 6 |
8 | 14 14 |
合计 | 16 16 |
14 14 |
30 |
8 |
15 |
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
提示:可参考试卷第一页的公式.
在本次安徽“6+2”联谊学校联考中数学科试卷共有10道选择题,每道选择题有4个选项,其中只有一个是正确的,考生答对得5分,不答或答错得0分.某考生每道题都给出一个答案,且已确定其中有7道题的答案是正确的,而其余题中有1道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意只能乱猜.试求该考生:
(1)选择题得50分的概率;
(2)选择题所得分数ξ的数学期望. 查看习题详情和答案>>
(1)选择题得50分的概率;
(2)选择题所得分数ξ的数学期望. 查看习题详情和答案>>
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列.
附:,其中
查看习题详情和答案>>
男性 | 女性 | 合计 | |
反感 | 10 | ||
不反感 | 8 | ||
合计 | 30 |
8 |
15 |
(Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列.
附:,其中
P(K2≥k0 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |