摘要:当且仅当.即时.等号成立.故四边形MRNQ的面积的最小值为72.12分
网址:http://m.1010jiajiao.com/timu_id_336555[举报]
一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
【解析】解:令矩形与墙垂直的两边为宽并设矩形宽为,则长为
所以矩形的面积 (
) (4分
=128 (8分)
当且仅当时,即
时等号成立,此时
有最大值128
所以当矩形的长为=16,宽为8时,
菜园面积最大,最大面积为128 (13分)答:当矩形的长为16米,宽为8米时。菜园面积最大,最大面积为128平方米(注:也可用二次函数模型解答)
查看习题详情和答案>>
(2008•奉贤区模拟)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
∈D均满足f(
)≥
[f(x)+f(y)],当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)给定两个函数:f1(x)=
(x>0),f2(x)=logax(a>1,x>0).证明:f1(x)∉M,f2(x)∈M.
(3)试利用(2)的结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.
查看习题详情和答案>>
x+y |
2 |
x+y |
2 |
1 |
2 |
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)给定两个函数:f1(x)=
1 |
x |
(3)试利用(2)的结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.