摘要:由函数y=f(x)确定数列{an}.an=f的反函数y=f ?1(x)能确定数列{bn}.bn= f ?1(n).若对于任意nÎN*.都有bn=an.则称数列{bn}是数列{an}的“自反数列 .
网址:http://m.1010jiajiao.com/timu_id_328993[举报]
由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”。
(1)若函数f(x)=2确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式对任意的正整数n恒成立,求实数a的取值范围;
(3)设(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn}, 求数列{tn}前n项和Sn。
查看习题详情和答案>>
(1)若函数f(x)=2确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式对任意的正整数n恒成立,求实数a的取值范围;
(3)设(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn}, 求数列{tn}前n项和Sn。
若函数y=f(x)存在反函数y=f-1(x),由函数y=f(x)确定数列{an},an=f(n),由函数y=f-1(x)确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若数列{bn}是函数f(x)=确定数列{an}的反数列,试求数列{bn}的前n项和Sn;
(2)若函数f(x)=2确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.
查看习题详情和答案>>
(1)若数列{bn}是函数f(x)=确定数列{an}的反数列,试求数列{bn}的前n项和Sn;
(2)若函数f(x)=2确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.
查看习题详情和答案>>
由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
+
+…+
>
loga(1-2a)对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
•3n+
•(2n-1)(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn.
查看习题详情和答案>>
(1)若函数f(x)=2
x |
(2)对(1)中{bn},不等式
|
|
|
1 |
2 |
(3)设cn=
1+(-1)λ |
2 |
1-(-1)λ |
2 |
由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
+
+…+
>
loga(1-2a)对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
•3n+
•(2n-1)(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn.
查看习题详情和答案>>
(1)若函数f(x)=2
x |
(2)对(1)中{bn},不等式
|
|
|
1 |
2 |
(3)设cn=
1+(-1)λ |
2 |
1-(-1)λ |
2 |