摘要:则=(-a, a, -a). 8分
网址:http://m.1010jiajiao.com/timu_id_32698[举报]
(2012•青岛二模)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位:辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆.
(Ⅰ)求z的值;
(Ⅱ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个分数a.记这8辆轿车的得分的平均数为
,定义事件E={|a-
|≤0.5,且函数f(x)=ax2-ax+2.31没有零点},求事件E发生的概率.
查看习题详情和答案>>
(Ⅰ)求z的值;
轿车A | 轿车B | 轿车C | |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
. |
x |
. |
x |
(2013•江门一模)采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号为1,2,…,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为( )
查看习题详情和答案>>
(2013•南开区二模)在某校组织的一次篮球定点投篮测试中,规定每人最多投3次.每次投篮的结果相互独立.在A处每投进一球得3分,在B处每投进一球得2分,否则得0分.将学生得分逐次累加并用ξ表示,如果ξ的值不低于3分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在A处投一球,以后都在B处投:方案2:都在B处投篮.甲同学在A处投篮的命中率为0.5,在B处投篮的命中率为0.8.
(1)当甲同学选择方案1时.
①求甲同学测试结束后所得总分等于4的概率:
②求甲同学测试结束后所得总分ξ的分布列和数学期望Eξ;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
查看习题详情和答案>>
(1)当甲同学选择方案1时.
①求甲同学测试结束后所得总分等于4的概率:
②求甲同学测试结束后所得总分ξ的分布列和数学期望Eξ;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.