摘要:∴q=3. ∴bn=b1?qn-1=2?3n-1. 6分(2)∵数列{an}是等差数列.a1+a2+a3=b2+b3,
网址:http://m.1010jiajiao.com/timu_id_32670[举报]
设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
={n∈N|f(n)∈P},
={n∈N|f(n)∈Q},则(
∩CN
)∪(
∩CN
)=( )
| ? |
| P |
| ? |
| Q |
| ? |
| P |
| ? |
| Q |
| ? |
| Q |
| ? |
| P |
| A、{0,3} |
| B、{1,2} |
| C、{3,4,5} |
| D、{1,2,6,7} |
已知等差数列{an}满足a2=3,a5=9,若数列{bn}满足b1=3, bn+1=abn,则{bn}的通项公式为( )
| A、bn=3n+1 | B、bn=2n+1 | C、bn=3n+2 | D、bn=2n+2 |