摘要:⑵设..由⑴得.--7分.
网址:http://m.1010jiajiao.com/timu_id_316212[举报]
已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由. 查看习题详情和答案>>
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由. 查看习题详情和答案>>
已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切。
(1)求圆C的方程;
(2)设直线
:
与圆C相交于A、B两点,求实数a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线过点P(-2,4), 若存在,求出实数a的值;若不存在,请说明理由。
查看习题详情和答案>>
(1)求圆C的方程;
(2)设直线
(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线过点P(-2,4), 若存在,求出实数a的值;若不存在,请说明理由。
已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.
查看习题详情和答案>>
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.
查看习题详情和答案>>
已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.
查看习题详情和答案>>
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.
查看习题详情和答案>>
设椭圆
:
(
)的一个顶点为
,
,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为
,即
又因为
,得到
,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合
得到结论。
解:(1)椭圆的顶点为
,即![]()
,解得
,
椭圆的标准方程为
--------4分
(2)由题可知,直线
与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线
为
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直线
的方程为
或
即
或![]()
查看习题详情和答案>>