网址:http://m.1010jiajiao.com/timu_id_299745[举报]
设的导数为,若函数的图象关于直线对称,且.
(Ⅰ)求实数,的值;
(Ⅱ)求函数的单调区间.
【解析】第一问中,由于函数的图象关于直线对称,所以.
又 ∴
第二问中由(Ⅰ),,
令,或;
∴函数在及上递增,在上递减.
查看习题详情和答案>>
在中,已知 ,面积,
(1)求的三边的长;
(2)设是(含边界)内的一点,到三边的距离分别是
①写出所满足的等量关系;
②利用线性规划相关知识求出的取值范围.
【解析】第一问中利用设中角所对边分别为
由得
又由得即
又由得即
又 又得
即的三边长
第二问中,①得
故
②
令依题意有
作图,然后结合区域得到最值。
查看习题详情和答案>>
已知,函数
(1)当时,求函数在点(1,)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当时, 又 所以函数在点(1,)的切线方程为;(2)中令 有
对a分类讨论,和得到极值。(3)中,设,,依题意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时, 又
∴ 函数在点(1,)的切线方程为 --------4分
(Ⅱ)令 有
① 当即时
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
极大值 |
极小值 |
故的极大值是,极小值是
② 当即时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。
综上所述 时,极大值为,无极小值
时 极大值是,极小值是 ----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间上为增函数,则
依题意,只需,即
解得 或(舍去)
则正实数的取值范围是(,)
查看习题详情和答案>>