网址:http://m.1010jiajiao.com/timu_id_284700[举报]
已知椭圆x2+
=1及两点P(-2,0)、Q(0,1),过点P作斜率为k的直线交椭圆于不同的两点A、B,设线段AB的中点为M,连结QM.
(1)k为何值时,直线QM与椭圆的准线平行?
(2)试判断直线QM能否过椭圆的顶点?若能,求出相应的k值,若不能,说明理由.
查看习题详情和答案>>
| |||||||||||
| |||||||||||||||
解答题:解答应写出文字说明,证明过程或演算步骤.
设P(x1,y1),Q(x2,y2)是抛物线C:y2=2px(p>0)上相异两点,且
,直线PQ与x轴相交于E.
(Ⅰ)若P,Q到x轴的距离的积为4,求p的值;
(Ⅱ)若p为已知常数,在x轴上,是否存在异于E的一点F,使得直线PF与抛物线的另一交点为R,而直线RQ与x轴相交于T,且有
,若存在,求出F点的坐标(用p表示),若不存在,说明理由.
| |||||||||||||||