摘要:又.(1)当点P在y轴上移动时.求点M的轨迹C的方程,
网址:http://m.1010jiajiao.com/timu_id_281456[举报]
(2008•和平区三模)已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在直线PQ上,且
•
=0,又
=-
.
(1)当点P在y轴上移动时,求点M的轨迹C的方程;
(2)若直线l:y=k(x-1)(k>2)与轨迹C交于A、B两点,AB中点N到直线3x+4y+m=0(m>-3)的距离为
,求m的取值范围.
查看习题详情和答案>>
| HP |
| PM |
| PM |
| 3 |
| 2 |
| MQ |
(1)当点P在y轴上移动时,求点M的轨迹C的方程;
(2)若直线l:y=k(x-1)(k>2)与轨迹C交于A、B两点,AB中点N到直线3x+4y+m=0(m>-3)的距离为
| 1 |
| 5 |
| HP |
| PM |
| PM |
| 3 |
| 2 |
| MQ |
(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)(在下列两题中,任选一题,写出计算过程,并求出结果,若同时选做两题,
则只批阅第②小题,第①题的解答,不管正确与否,一律视为无效,不予批阅):
①将(1)中的曲线C推广为椭圆:
| x2 |
| 2 |
将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解;
②(解答本题,最多得9分)将(1)中的曲线C推广为椭圆:
| x2 |
| a2 |
| y2 |
| b2 |
将(2)中的定点取为原点,求与(2)相类似的问题的解.
已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在直线PQ上,且满足
•
=0,
=-
.
(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过点(1,0)作直线L交轨迹C于A、B两点,已知
=2
,求直线L的方程.
查看习题详情和答案>>
| HP |
| PM |
| PM |
| 3 |
| 2 |
| MQ |
(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过点(1,0)作直线L交轨迹C于A、B两点,已知
| AF |
| FB |