摘要:,两边平方,得
网址:http://m.1010jiajiao.com/timu_id_280974[举报]
70、在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图1所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图2所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是

查看习题详情和答案>>
S42=S12+S22+S32
.
在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
=x
,
=y
.
(1)求证:x与y的关系为y=
;
(2)设f(x)=
,定义函数F(x)=
-1(0<x≤1),点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
的等比数列,O为原点,令
=
+
+…+
,是否存在点Q(1,m),使得
⊥
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.
查看习题详情和答案>>
| OM |
| OA |
| ON |
| OB |
(1)求证:x与y的关系为y=
| x |
| x+1 |
(2)设f(x)=
| x |
| x+1 |
| 1 |
| f(x) |
| 1 |
| 2 |
| OP |
| OP1 |
| OP2 |
| OPn |
| OP |
| OQ |
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
| 1 |
| 2 |
在平面直角坐标系xOy中,点A(4,0)、B(1,0),动点P满足
•
=6|
|.
(1)求点P的轨迹C的方程.
(2)若直线y=x+b(b>0)与轨迹C相交于M、N两点,直线y=x-b与轨迹C相交于P、Q两点,顺次连接M、N、P、Q得到的四边形MNPQ是菱形,求b. 查看习题详情和答案>>
| AB |
| AP |
| PB |
(1)求点P的轨迹C的方程.
(2)若直线y=x+b(b>0)与轨迹C相交于M、N两点,直线y=x-b与轨迹C相交于P、Q两点,顺次连接M、N、P、Q得到的四边形MNPQ是菱形,求b. 查看习题详情和答案>>