摘要:取中点.连结.由(Ⅰ)知.得.
网址:http://m.1010jiajiao.com/timu_id_280418[举报]
如图,已知直线()与抛物线:和圆:都相切,是的焦点.
(Ⅰ)求与的值;
(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为, 直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
【解析】第一问中利用圆: 的圆心为,半径.由题设圆心到直线的距离.
即,解得(舍去)
设与抛物线的相切点为,又,得,.
代入直线方程得:,∴ 所以,
第二问中,由(Ⅰ)知抛物线方程为,焦点. ………………(2分)
设,由(Ⅰ)知以为切点的切线的方程为.
令,得切线交轴的点坐标为 所以,, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴ 因为是定点,所以点在定直线
第三问中,设直线,代入得结合韦达定理得到。
解:(Ⅰ)由已知,圆: 的圆心为,半径.由题设圆心到直线的距离.
即,解得(舍去). …………………(2分)
设与抛物线的相切点为,又,得,.
代入直线方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知抛物线方程为,焦点. ………………(2分)
设,由(Ⅰ)知以为切点的切线的方程为.
令,得切线交轴的点坐标为 所以,, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴ 因为是定点,所以点在定直线上.…(2分)
(Ⅲ)设直线,代入得, ……)得, …………………………… (2分)
,
.△的面积范围是
查看习题详情和答案>>
(2009•大连二模)(I)已知函数f(x)=x-
,x∈(
,
),P(x1,f(x1)),Q(x2,f(x2))是f(x)图象上的任意两点,且x1<x2.
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).
查看习题详情和答案>>
1 |
x |
1 |
4 |
1 |
2 |
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
f(b)-f(a) |
b-a |
f(b)-f(a) |
b-a |
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).