ÌâÄ¿ÄÚÈÝ
£¨2009•´óÁ¬¶þÄ££©£¨I£©ÒÑÖªº¯Êýf£¨x£©=x-
£¬x¡Ê(
£¬
)£¬P(x1£¬f(x1))£¬Q(x2£¬f(x2))ÊÇf(x)ͼÏóÉϵÄÈÎÒâÁ½µã£¬ÇÒx1£¼x2£®
¢ÙÇóÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§¼°f£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄÈ¡Öµ·¶Î§£»
¢ÚÓÉ¢ÙÄãµÃµ½µÄ½áÂÛÊÇ£ºÈôº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÓе¼º¯Êýf¡ä£¨x£©£¬ÇÒf£¨a£©¡¢f£¨b£©´æÔÚ£¬ÔòÔÚ£¨a£¬b£©ÄÚÖÁÉÙ´æÔÚÒ»µã¦Î£¬Ê¹µÃf¡ä£¨¦Î£©=
³ÉÁ¢£¨ÓÃa£¬b£¬f£¨a£©£¬f£¨b£©±íʾ£¬Ö»Ð´³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©
£¨II£©É躯Êýg£¨x£©µÄµ¼º¯ÊýΪg¡ä£¨x£©£¬ÇÒg¡ä£¨x£©Îªµ¥µ÷µÝ¼õº¯Êý£¬g£¨0£©=0£®ÊÔÔËÓÃÄãÔÚ¢ÚÖеõ½µÄ½áÂÛÖ¤Ã÷£º
µ±x¡Ê£¨0£¬1£©Ê±£¬f£¨1£©x£¼g£¨x£©£®
1 |
x |
1 |
4 |
1 |
2 |
¢ÙÇóÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§¼°f£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄÈ¡Öµ·¶Î§£»
¢ÚÓÉ¢ÙÄãµÃµ½µÄ½áÂÛÊÇ£ºÈôº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÓе¼º¯Êýf¡ä£¨x£©£¬ÇÒf£¨a£©¡¢f£¨b£©´æÔÚ£¬ÔòÔÚ£¨a£¬b£©ÄÚÖÁÉÙ´æÔÚÒ»µã¦Î£¬Ê¹µÃf¡ä£¨¦Î£©=
f(b)-f(a) |
b-a |
f(b)-f(a) |
b-a |
£¨II£©É躯Êýg£¨x£©µÄµ¼º¯ÊýΪg¡ä£¨x£©£¬ÇÒg¡ä£¨x£©Îªµ¥µ÷µÝ¼õº¯Êý£¬g£¨0£©=0£®ÊÔÔËÓÃÄãÔÚ¢ÚÖеõ½µÄ½áÂÛÖ¤Ã÷£º
µ±x¡Ê£¨0£¬1£©Ê±£¬f£¨1£©x£¼g£¨x£©£®
·ÖÎö£º£¨I£©¢ÙÓÉÓÚf£¨x£©=x-
£¬x¡Ê£¨
£¬
£©£¬ÒÀÌâÒ⣬¿ÉÇóµÃÖ±ÏßPQµÄбÂÊkPQ=1-
¡Ê£¨-15£¬-3£©£®¢ÚÒÀÌâÒ⣬ÔòÔÚ£¨a£¬b£©ÄÚÖÁÉÙ´æÔÚÒ»µã¦Î£¬Ê¹µÃf¡ä£¨¦Î£©=
£»
£¨II£©µ±x¡Ê£¨0£¬1£©£¬¸ù¾Ý£¨1£©ÖТڵĽáÂÛ£¬µÃµ½´æÔÚ¦Î1¡Ê£¨0£¬x£©£¬¦Î2¡Ê£¨x£¬1£©£¬Ê¹µÃg¡ä£¨¦Î1£©=
£¬g¡ä£¨¦Î2£©=
£¬ÔÙÀûÓÃg¡ä£¨x£©Îªµ¥µ÷µÝ¼õº¯Êý£¬g£¨0£©=0£¬¼´¿ÉÖ¤µÃg£¨1£©x£¼g£¨x£©£®
1 |
x |
1 |
4 |
1 |
2 |
1 |
x2x1 |
f(b)-f(a) |
b-a |
£¨II£©µ±x¡Ê£¨0£¬1£©£¬¸ù¾Ý£¨1£©ÖТڵĽáÂÛ£¬µÃµ½´æÔÚ¦Î1¡Ê£¨0£¬x£©£¬¦Î2¡Ê£¨x£¬1£©£¬Ê¹µÃg¡ä£¨¦Î1£©=
g(x)-g(0) |
x-0 |
g(1)-g(x) |
1-x |
½â´ð£º½â£º£¨1£©¢ÙÖ±ÏßPQµÄбÂÊkPQ=
=1-
£¬
ÓÉÓÚ
£¼x1£¼x2£¼
£¬ËùÒÔ-15£¼1-
£¼-3£¬
¼´Ö±ÏßPQµÄбÂÊkPQ¡Ê£¨-15£¬-3£©£®¡£¨2·Ö£©
ÓÉf¡ä£¨x£©=1-
£¬ÓÖx¡Ê£¨
£¬
£©£¬ËùÒÔf¡ä£¨x£©¡Ê£¨-15£¬-3£©£¬
¼´f£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄÈ¡Öµ·¶Î§Îªk¡Ê£¨-15£¬-3£©£®¡£¨4·Ö£©
¢Ú
£®¡£¨6·Ö£©
£¨2£©µ±x¡Ê£¨0£¬1£©£¬¸ù¾Ý£¨1£©ÖТڵĽáÂÛ£¬µÃµ½´æÔÚ¦Î1¡Ê£¨0£¬x£©£¬¦Î2¡Ê£¨x£¬1£©£¬Ê¹µÃ
g¡ä£¨¦Î1£©=
£¬g¡ä£¨¦Î2£©=
£¬¡£¨9·Ö£©
ÓÖg¡ä£¨x£©Îªµ¥µ÷µÝ¼õº¯Êý£¬ËùÒÔg¡ä£¨¦Î1£©£¾g¡ä£¨¦Î2£©£¬
¼´
£¾
£¬¶øg£¨0£©=0£¬
ËùÒÔ
£¾
£¬
ÒòΪx¡Ê£¨0£¬1£©£¬ËùÒÔx£¾0£¬1-x£¾0
ËùÒÔg£¨1£©x£¼g£¨x£©£®¡£¨12·Ö£©
f(x2)-f(x1) |
x2-x1 |
1 |
x2x1 |
ÓÉÓÚ
1 |
4 |
1 |
2 |
1 |
x2x1 |
¼´Ö±ÏßPQµÄбÂÊkPQ¡Ê£¨-15£¬-3£©£®¡£¨2·Ö£©
ÓÉf¡ä£¨x£©=1-
1 |
x2 |
1 |
4 |
1 |
2 |
¼´f£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄÈ¡Öµ·¶Î§Îªk¡Ê£¨-15£¬-3£©£®¡£¨4·Ö£©
¢Ú
f(b)-f(a) |
b-a |
£¨2£©µ±x¡Ê£¨0£¬1£©£¬¸ù¾Ý£¨1£©ÖТڵĽáÂÛ£¬µÃµ½´æÔÚ¦Î1¡Ê£¨0£¬x£©£¬¦Î2¡Ê£¨x£¬1£©£¬Ê¹µÃ
g¡ä£¨¦Î1£©=
g(x)-g(0) |
x-0 |
g(1)-g(x) |
1-x |
ÓÖg¡ä£¨x£©Îªµ¥µ÷µÝ¼õº¯Êý£¬ËùÒÔg¡ä£¨¦Î1£©£¾g¡ä£¨¦Î2£©£¬
¼´
g(x)-g(0) |
x-0 |
g(1)-g(x) |
1-x |
ËùÒÔ
g(x) |
x |
g(1)-g(x) |
1-x |
ÒòΪx¡Ê£¨0£¬1£©£¬ËùÒÔx£¾0£¬1-x£¾0
ËùÒÔg£¨1£©x£¼g£¨x£©£®¡£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÖ±ÏßµÄбÂʼ°ÀûÓò»µÈʽȷ¶¨Ð±ÂÊÖ®·¶Î§£¬¿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒå¼°×ÛºÏÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿