摘要:得----------6分
网址:http://m.1010jiajiao.com/timu_id_278050[举报]
由于生产条件的影响,生产某种产品正品的概率为
,次品的概率分别为
.已知生产1件正品获得的利润为6万元,而生产1件次品则亏损2万元.
(1)求生产3件产品恰有2件正品的概率;
(2)设2件产品的利润和(单位:万元)为ξ,求ξ的分布列和数学期望.
查看习题详情和答案>>
7 |
8 |
1 |
8 |
(1)求生产3件产品恰有2件正品的概率;
(2)设2件产品的利润和(单位:万元)为ξ,求ξ的分布列和数学期望.
由于电脑故障,使得随机变量ξ的分布列部分数据丢失(以□代替),其表如下:
则其期望为
查看习题详情和答案>>
ξ | 1 | 2 | 3 | 4 | 5 | 6 |
p | 0.20 | 0.10 | 0.□5 | 0.10 | 0.1□ | 0.20 |
3.5
3.5
.由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量P(t)(单位:吨)与上市时间t(单位:月)的关系大致如图(1)所示的折线ABCDE表示,销售价格Q(t)(单位:元/千克)与上市时间t(单位:月)的大致关系如图(2)所示的抛物线段GHR表示(H为顶点).
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为1≤
≤3),试列出P(x,y)所满足的条件,并求出相应的最大值.
查看习题详情和答案>>
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为1≤
x2 | y3 |
由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量P(t)(单位:吨)与上市时间t(单位:月)的关系大致如图(1)所示的折线ABCDE表示,销售价格Q(t)(单位:元/千克)与上市时间t(单位:月)的大致关系如图(2)所示的抛物线段GHR表示(H为顶点).
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为),试列出P(x,y)所满足的条件,并求出相应的最大值.
查看习题详情和答案>>
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为),试列出P(x,y)所满足的条件,并求出相应的最大值.
查看习题详情和答案>>
由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量P(t)(单位:吨)与上市时间t(单位:月)的关系大致如图(1)所示的折线ABCDE表示,销售价格Q(t)(单位:元/千克)与上市时间t(单位:月)的大致关系如图(2)所示的抛物线段GHR表示(H为顶点).
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为),试列出P(x,y)所满足的条件,并求出相应的最大值.
查看习题详情和答案>>
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为),试列出P(x,y)所满足的条件,并求出相应的最大值.
查看习题详情和答案>>