网址:http://m.1010jiajiao.com/timu_id_27664[举报]
试判断下面的证明过程是否正确:
用数学归纳法证明:
证明:(1)当时,左边=1,右边=1
∴当时命题成立.
(2)假设当时命题成立,即
则当时,需证
由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前
项和,其和为
∴式成立,即
时,命题成立.根据(1)(2)可知,对一切
,命题成立.
试判断下面的证明过程是否正确:
用数学归纳法证明:
证明:(1)当时,左边=1,右边=1
∴当时命题成立.
(2)假设当时命题成立,即
则当时,需证
由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前
项和,其和为
∴式成立,即
时,命题成立.根据(1)(2)可知,对一切
,命题成立.
已知一个关于正整数的命题
满足“若
时命题
成立,则
时命题
也成立”.有下列判断:
(1)当时命题
不成立,则
时命题
不成立;
(2)当时命题
不成立,则
时命题
不成立;
(3)当时命题
成立,则
时命题
成立;
(4)当时命题
成立,则
时命题
成立.
其中正确判断的序号是 .(写出所有正确判断的序号)
查看习题详情和答案>>
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
查看习题详情和答案>>