摘要:9分(3)设取出3球中颜色都不相同的事件为B.则有
网址:http://m.1010jiajiao.com/timu_id_27607[举报]
暗箱中开始有3个红球,2个白球.每次从暗箱中取出一球后,将此球以及与它同色的5个球(共六个球)一齐放回暗箱中.
(1)求第二次取出红球的概率
(2)求第三次取出白球的概率;
(3)设取出白球得5分,取出红球得8分,求连续取球3次得分的期望值. 查看习题详情和答案>>
(1)求第二次取出红球的概率
(2)求第三次取出白球的概率;
(3)设取出白球得5分,取出红球得8分,求连续取球3次得分的期望值. 查看习题详情和答案>>
已知暗箱中开始有3个红球,2个白裘。现每次从暗箱中取出一个球后,再将此球以及与它同色的5个球(共6个球)一起放回箱中。
(1)求第二次取出红球的概率;
(2)求第三次取出白球的概率;
(3)设取出白球得5分,取出红球得8分,求连续取球3次得分的期望值。
查看习题详情和答案>>已知暗箱中开始有3个红球,2个白裘。现每次从暗箱中取出一个球后,再将此球以及与它同色的5个球(共6个球)一起放回箱中。
(1)求第二次取出红球的概率;
(2)求第三次取出白球的概率;
(3)设取出白球得5分,取出红球得8分,求连续取球3次得分的期望值。
查看习题详情和答案>>已知
(1)求函数在上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有成立
【解析】第一问中利用
当时,在单调递减,在单调递增,当,即时,,
第二问中,,则设,
则,单调递增,,,单调递减,,因为对一切,恒成立,
第三问中问题等价于证明,,
由(1)可知,的最小值为,当且仅当x=时取得
设,,则,易得。当且仅当x=1时取得.从而对一切,都有成立
解:(1)当时,在单调递减,在单调递增,当,即时,,
…………4分
(2),则设,
则,单调递增,,,单调递减,,因为对一切,恒成立, …………9分
(3)问题等价于证明,,
由(1)可知,的最小值为,当且仅当x=时取得
设,,则,易得。当且仅当x=1时取得.从而对一切,都有成立
查看习题详情和答案>>