摘要:即时.函数为增函数.
网址:http://m.1010jiajiao.com/timu_id_273787[举报]
函数应用题:某厂生产一种机器的固定成本(即固定投入)为0.5万元,但是每生产100台需要加可变成本(另增加投入)0.25万元,市场对此产品的年需求量为500台.销售收入(单位:万元)的函数为F(x)=5x-
x2(0≤x≤5),其中x是产品售出的数量(单位:百台).
(1)写出利润G(x)表示为年产量的函数关系式.
(2)年产量为多少时,工厂所得利润最大? 查看习题详情和答案>>
1 | 2 |
(1)写出利润G(x)表示为年产量的函数关系式.
(2)年产量为多少时,工厂所得利润最大? 查看习题详情和答案>>
函数应用题:某厂生产一种机器的固定成本(即固定投入)为0.5万元,但是每生产100台需要加可变成本(另增加投入)0.25万元,市场对此产品的年需求量为500台.销售收入(单位:万元)的函数为(0≤x≤5),其中x是产品售出的数量(单位:百台).
(1)写出利润G(x)表示为年产量的函数关系式.
(2)年产量为多少时,工厂所得利润最大?
查看习题详情和答案>>
(1)写出利润G(x)表示为年产量的函数关系式.
(2)年产量为多少时,工厂所得利润最大?
查看习题详情和答案>>
函数应用题:某厂生产一种机器的固定成本(即固定投入)为0.5万元,但是每生产100台需要加可变成本(另增加投入)0.25万元,市场对此产品的年需求量为500台.销售收入(单位:万元)的函数为(0≤x≤5),其中x是产品售出的数量(单位:百台).
(1)写出利润G(x)表示为年产量的函数关系式.
(2)年产量为多少时,工厂所得利润最大?
查看习题详情和答案>>
设函数,其中为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.
【解析】第一问利用由已知,所以,
由,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;
第二问中,因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
解:(Ⅰ)由已知,所以, 由,得, 所以,在区间上,,函数在区间上单调递减;
在区间上,,函数在区间上单调递增;
即函数的单调递减区间为,单调递增区间为.
(Ⅱ)因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
所以,的最大值为
查看习题详情和答案>>