网址:http://m.1010jiajiao.com/timu_id_267151[举报]
1.解析:,故选A。
2.解析:∵
,
故选B。
3.解析:由,得,此时,所以,,故选C。
4.解析:显然,若与共线,则与共线;若与共线,则,即,得,∴与共线,∴与共线是与共线的充要条件,故选C。
5.解析:设公差为,由题意得,;,解得或,故选C。
6.解析:∵双曲线的右焦点到一条渐近线的距离等于焦距的,∴,又∵,∴,∴,∴双曲线的离心率是。故选B.
7.解析:∵、为正实数,∴,∴;由均值不等式得恒成立,,故②不恒成立,又因为函数在是增函数,∴,故恒成立的不等式是①③④。故选C.
8.解析:∵,∴在区间上恒成立,即在区间上恒成立,∴,故选D。
9.解析:∵
,此函数的最小值为,故选C。
10.解析:如图,∵正三角形的边长为,∴,∴,又∵,∴,故选D。
11.解析:∵在区间上是增函数且,∴其反函数在区间上是增函数,∴,故选A
12.解析:如图,①当或时,圆面被分成2块,涂色方法有20种;②当或时,圆面被分成3块,涂色方法有60种;
③当时,圆面被分成4块,涂色方法有120种,所以m的取值范围是,故选A。
13.解析:做出表示的平面区域如图,当直线经过点时,取得最大值5。
14.解析:∵,∴时,,又时,满足上式,因此,,
∴。
15.解析:设正四面体的棱长为,连,取的中点,连,∵为的中点,∴∥,∴或其补角为与所成角,∵,,∴,∴,又∵,∴,∴与所成角的余弦值为。
16.解析:∵,∴,∵点为的准线与轴的交点,由向量的加法法则及抛物线的对称性可知,点为抛物线上关于轴对称的两点且做出图形如右图,其中为点到准线的距离,四边形为菱形,∴,∴,∴,∴,∴,∴向量与的夹角为。
17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分
∴,,………4分
(Ⅱ)∵,,∴,∴,………………………6分
又∵,∴,∴,………………………8分
∴。………………………10分
18.解析:(Ⅰ)∵,∴;……………………理3文4分
(Ⅱ)∵三科会考不合格的概率均为,∴学生甲不能拿到高中毕业证的概率;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分别为,∴学生甲被评为三好学生的概率为。……………………12分
(理)∵,,,。……………………9分
∴的分布列如下表:
0
1
2
3
∴的数学期望。……………………12分
19.(12分)解析:(Ⅰ)时,
,,
由得, 或 ………3分
+
0
-
0
+
递增
极大值
递减
极小值
递增
, ………………………6分
(Ⅱ)在定义域上是增函数,
对恒成立,即
………………………9分
又(当且仅当时,)
………………………4分
20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分
(Ⅱ)∵平面,∴,,∴为二面角的平面角,………………………6分
,,∴,又∵平面,,∴,∴二面角的正切值的大小为。………………………8分
(Ⅲ)过点做∥,交于点,∵平面,∴为在平面内的射影,∴为与平面所成的角,………………………10分
∵,∴,又∵∥,∴和与平面所成的角相等,∴与平面所成角的正切值为。………………………12分
解法2:如图建立空间直角坐标系,(Ⅰ)∵,,∴点的坐标分别是,,,∴,,设,∵平面,∴,∴,取,∴,∴。………………………4分
(Ⅱ)设二面角的大小为,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小为。………………………8分
(Ⅲ)设与平面所成角的大小为,∵平面的法向量是,,∴,∴,∴与平面所成角的正切值为。………………………12分
21.(Ⅰ) 解析:如图,设右准线与轴的交点为,过点分别向轴及右准线引垂线,∵,∴,又∵ ∥,∴,………………………2分
∴,又∵,∴,又∵,解得,∴,∴双曲线的方程为。………………………4分
(Ⅱ)联立方程组 消得:
由直线与双曲线交于不同的两点得:
即 于是 ,且 ………………①………………………6分
设、,则
……………………9分
又,所以,解得 ……………②
由①和②得 即 或
故的取值范围为。………………………12分
22.(12分)解析:(Ⅰ)∵,∴,∴,∴数列是等差数列,………………………2分
又∵,,∴公差为2,
∴,………………………4分
(Ⅱ)∵,∴,
∴数列是公比为2的等比数列,
∵,∴,………………………6分
(Ⅲ)∵,
∴………………………8分
∴………………………10分
∵,∴,又∵,∴………………………12分
已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
第二问中,
假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
(Ⅱ) 假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得……② ……………………9分
则.
代入①式得,解得………………………………………12分
代入②式得,得.
综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是
查看习题详情和答案>>
(1)求双曲线的标准方程;
(2)设点M为双曲线上一动点,点N为圆x2+(y-2)2=上一动点,求|MN|的取值范围。