摘要:过点C作CN⊥AH于N.交BD于K. 在Rt△BCK中.∠CBK=90°-60°=30°
网址:http://m.1010jiajiao.com/timu_id_261[举报]
如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆O1和半圆O2,其中O1和O2分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.
(1)连接O1F,O1D,DF,O2F,O2E,EF,证明:△DO1F≌△FO2E;
(2)如图二,过点A分别作半圆O1和半圆O2的切线,交BD的延长线和CE的延长线于点P和点Q,连接PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
(3)如图三,过点A作半圆O2的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连接PA.证明:PA是半圆O1的切线.
查看习题详情和答案>>
(1)连接O1F,O1D,DF,O2F,O2E,EF,证明:△DO1F≌△FO2E;
(2)如图二,过点A分别作半圆O1和半圆O2的切线,交BD的延长线和CE的延长线于点P和点Q,连接PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
(3)如图三,过点A作半圆O2的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连接PA.证明:PA是半圆O1的切线.
查看习题详情和答案>>
观察本题的三个图形,思考下列问题
(1)如图1,正方形ABCD中,点M是CD上异于端点的任意一点,过点C作CN⊥BM于O,且交AD于N点.求证:BM=CN;
(2)如图2,等边△ABC中,点M是CA上异于端点的任意一点,过点C作射线CN交AB于点N、交BM于点O,且使∠BOC=120°.
请你判断此时BM与CN的大小关系,并证明你的结论.
(3)如图3,正n边形ABCDE…An中,点M是CD上异于端点的任意一点,过点C作射线CN交DE于点N、交BM于点O,且使BM=CN.设此时∠BOC的大小为y,请你写出y与n之间的函数关系式.
查看习题详情和答案>>
(1)如图1,正方形ABCD中,点M是CD上异于端点的任意一点,过点C作CN⊥BM于O,且交AD于N点.求证:BM=CN;
(2)如图2,等边△ABC中,点M是CA上异于端点的任意一点,过点C作射线CN交AB于点N、交BM于点O,且使∠BOC=120°.
请你判断此时BM与CN的大小关系,并证明你的结论.
(3)如图3,正n边形ABCDE…An中,点M是CD上异于端点的任意一点,过点C作射线CN交DE于点N、交BM于点O,且使BM=CN.设此时∠BOC的大小为y,请你写出y与n之间的函数关系式.
查看习题详情和答案>>
已知:如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=DC=2,点M从点B开始,以每秒1个单位的速度向点C运动;点N从点D开始,沿D→A→B方向,以每秒1个单位的速度向点B运动.若点M、N同时开始运动,其中一点到达终点,另一点也停止运动,运动时间为t(t>0).过点N作NP⊥BC与P,交BD于点Q.
(1)点D到BC的距离为 ;
(2)求出t为何值时,QM∥AB;
(3)设△BMQ的面积为S,求S与t的函数关系式;
(4)求出t为何值时,△BMQ为直角三角形. 查看习题详情和答案>>
(1)点D到BC的距离为
(2)求出t为何值时,QM∥AB;
(3)设△BMQ的面积为S,求S与t的函数关系式;
(4)求出t为何值时,△BMQ为直角三角形. 查看习题详情和答案>>