网址:http://m.1010jiajiao.com/timu_id_249373[举报]
1-8 BACBD BDD
9. 10. 400 11. 12. 128 13.. 14. 15.
解析:5.数形结合法 7.解:由图知三角形ABC为等腰三角形,只要∠AF2B为锐角即可,所以有,即,解出,故选D
8.由已知得图关于轴对称,且的周期是2,所以可作出在[-1,1]的图象,由图的单增性结合三角函数值可判断D。
12.解:当时,,相减得,且由已知得,所以所求为 14,因为由题意得,解得
15,解:由题知△BED~△BCE,所以,可求得BE=
16.解:(Ⅰ)由题意得
由A为锐角得,
(Ⅱ)由(Ⅰ)知,所以
因为,所以,因此,当时,有最大值,
当时,有最小值 ? 3,所以所求函数的值域是
17.解:令分别表示甲、乙、丙在第k局中获胜.
(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为
(Ⅱ)的所有可能值为2,3,4,5,6,且
故有分布列
2
3
4
5
6
P
从而(局).
18.证(1)因为侧面,故
在中, 由余弦定理有
故有
而 且平面
(2)
从而 且 故
不妨设 ,则,则
又 则
在中有 从而(舍负)
故为的中点时,
(3)取的中点,的中点,的中点,的中点
连则,连则,连则
连则,且为矩形,
又 故为所求二面角的平面角
在中,
19.解:(1)依题意,到距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线 曲线方程是
(2)设圆心,因为圆过
故设圆的方程 令得:
设圆与轴的两交点为,则
在抛物线上,
所以,当运动时,弦长为定值2
20.解:(1),依题意有,故.
从而.
的定义域为,当时,;
当时,;当时,.
从而,分别在区间单调增加,在区间单调减少.
(2)的定义域为,.
方程的判别式.
①若,即,在的定义域内,故无极值.
②若,则或.若,,.
当时,,当时,,所以无极值.若,,,也无极值.
③若,即或,则有两个不同的实根,.
当时,,从而有的定义域内没有零点,故无极值.
当时,,,在的定义域内有两个不同的零点,由根值判别方法知在取得极值.综上,存在极值时,的取值范围为.的极值之和为
.
21.解:(1)由点P在直线上,即,且,数列{}
是以1为首项,1为公差的等差数列
,同样满足,所以
(2)
所以是单调递增,故的最小值是
(3),可得,
,
……
,n≥2
故存在关于n的整式g(x)=n,使得对于一切不小于2的自然数n恒成立.
(2)法二:以为原点为轴,设,则
由得 即
化简整理得 , 或
当时与重合不满足题意
当时为的中点
故为的中点使
(3)法二:由已知, 所以二面角的平面角的大小为向量与的夹角 因为
(本题满分14分)已知数列中,且点在直线上. (1)求数列的通项公式; (2)若函数求函数的最小值; (3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由.
查看习题详情和答案>>
(本小题满分14分)
已知函数,当时,取得极小值.
(1)求,的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.