摘要:(2)若的最大值为正数.求a的取值范围.
网址:http://m.1010jiajiao.com/timu_id_21377[举报]
ABCACDCCDB
2
(2,1)È(1,2) -2
17、解:(Ⅰ)
(Ⅱ)
18、[解](1)
(2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此
.
由于.
19、解:(Ⅰ)
①
由方程 ②
因为方程②有两个相等的根,所以,
即
由于代入①得的解析式
(Ⅱ)由
及
由 解得
故当的最大值为正数时,实数a的取值范围是
20、解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则
∵点在函数的图象上
∴
(Ⅱ)由
当时,,此时不等式无解
当时,,解得
因此,原不等式的解集为
21、解: (Ⅰ)由原式得
∴
(Ⅱ)由 得,此时有.
由得或x=-1 , 又
所以f(x)在[--2,2]上的最大值为最小值为
(Ⅲ)解法一: 的图象为开口向上且过点(0,--4)的抛物线,由条件得
即 ∴--2≤a≤2.
所以a的取值范围为[--2,2].
解法二:令即 由求根公式得:
所以在和上非负.
由题意可知,当x≤-2或x≥2时, ≥0,
从而x1≥-2, x2≤2,
即 解不等式组得: --2≤a≤2.
∴a的取值范围是[--2,2].
已知函数,函数f(x)在处取得极值.
(1)求实数a的值;
(2)若b≤2,t<0,函数f(x)在[t,e](e为自然对数的底数)上的最大值为2,求实数t的取值范围;
(3)对任意给定的正实数b,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
查看习题详情和答案>>
已知函数,函数f(x)在处取得极值.
(1)求实数a的值;
(2)若b≤2,t<0,函数f(x)在[t,e](e为自然对数的底数)上的最大值为2,求实数t的取值范围;
(3)对任意给定的正实数b,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
查看习题详情和答案>>
(1)求实数a的值;
(2)若b≤2,t<0,函数f(x)在[t,e](e为自然对数的底数)上的最大值为2,求实数t的取值范围;
(3)对任意给定的正实数b,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
查看习题详情和答案>>