摘要:由.令0
网址:http://m.1010jiajiao.com/timu_id_20512[举报]
如图,设A是由n×n个实数组成的n行n列的数表,其中aij(i,j=1,2,3…,n)表示位于第i行第j列的实数,且aij∈{1,-1}.记S(n,n)为所有这样的数表构成的集合.
对于A∈S(n,n),记ri(A)为A的第i行各数之积,Cj(A)为A的第j列各数之积.令l(A)=
ri(A)+
Cj(A).
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
(Ⅱ)证明:存在A∈S(n,n),使得l(A)=2n-4k,其中k=0,1,2,…,n;
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.
查看习题详情和答案>>
a11 | a12 | … | a1n |
a21 | a22 | … | a2n |
• • • |
• • • |
… | • • • |
an1 | an2 | … | ann |
n |
i=1 |
n |
j=1 |
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
1 | 1 | -1 | -1 |
1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 |
-1 | -1 | 1 | 1 |
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.
如图,设A是由n×n个实数组成的n行n列的数表,其中au(i,j=1,2,3,…,n)表示位于第i行第j列的实数,且au∈{1,-1}.记S(n,n)为所有这样的数表构成的集合.
对于A∈S(n,n),记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令l(A=
ri(A)+
cj(A)).
(Ⅰ)请写出一个A∈s(4,4),使得l(A)=0;
(Ⅱ)是否存在A∈S(9,9),使得l(A)=0?说明理由;
(Ⅲ)给定正整数n,对于所有的A∈S(n,n),求l(A)的取值集合.
查看习题详情和答案>>
对于A∈S(n,n),记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令l(A=
n |
i-1 |
n |
j-1 |
(Ⅰ)请写出一个A∈s(4,4),使得l(A)=0;
(Ⅱ)是否存在A∈S(9,9),使得l(A)=0?说明理由;
(Ⅲ)给定正整数n,对于所有的A∈S(n,n),求l(A)的取值集合.
a11 | a12 | … | a1n |
a21 | a22 | … | a2n |
… | … | … | … |
an1 | an2 | … | ann |
已知,数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
.
(1)求a的值;
(2)试确定数列{an}是不是等差数列,若是,求出其通项公式.若不是,说明理由;
(3)令pn=
+
,是否存在正整数M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值,若不存在,说明理由.
查看习题详情和答案>>
n(an-a1) |
2 |
(1)求a的值;
(2)试确定数列{an}是不是等差数列,若是,求出其通项公式.若不是,说明理由;
(3)令pn=
Sn+2 |
Sn+1 |
Sn+1 |
Sn+2 |