摘要:证明:(1)因为,数列满足:,
网址:http://m.1010jiajiao.com/timu_id_198617[举报]
((本小题共13分)
若数列满足,数列为数列,记=.
(Ⅰ)写出一个满足,且〉0的数列;
(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故是递增数列.综上,结论得证。
查看习题详情和答案>>
请阅读下列材料:对命题“若两个正实数满足,那么。”
证明如下:构造函数,因为对一切实数,恒有,又,从而得,所以。根据上述证明方法,若个正实数满足时,你可以构造函数 ,进一步能得到的结论为 。(不必证明)
查看习题详情和答案>>