摘要:①当p<0时.由(1)知f()<0
网址:http://m.1010jiajiao.com/timu_id_198346[举报]
已知c>0.设
命题P:cn=0.
命题Q:当x∈[,2]时,函数f(x)=x+>恒成立.
如果P或Q为真命题,P且Q为假命题,求c的取值范围.
分析:由cn=0得,0<c<1.∴P:0<c<1,
由x∈[,2]时,函数f(x)=x+>恒成立,想到<f(x)min,故需求f(x)在[,2]上的最小值.
查看习题详情和答案>>已知函数f(x)=
(Ⅰ)判断f(x)的奇偶性,并证明你的结论;
(Ⅱ)若x1≠x2,且f(x1)=f(x2),求f(x1+x2);
(Ⅲ)由点H(0,h)向f(x)引切线,切点分别为P,Q,当△PQH为正三角形时,求h的值.
查看习题详情和答案>>
|
(Ⅰ)判断f(x)的奇偶性,并证明你的结论;
(Ⅱ)若x1≠x2,且f(x1)=f(x2),求f(x1+x2);
(Ⅲ)由点H(0,h)向f(x)引切线,切点分别为P,Q,当△PQH为正三角形时,求h的值.
设函数y=f(x)对任意的实数x,都有f(x)=
f(x-1),且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.
查看习题详情和答案>>
1 | 2 |
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.