摘要:解答:1.0.176,
网址:http://m.1010jiajiao.com/timu_id_197567[举报]
(2012•黄浦区二模)已知函数y=f(x)是定义域为R的偶函数,且对x∈R,恒有f(1+x)=f(1-x).又当x∈[0,1]时,f(x)=x.
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.
查看习题详情和答案>>
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.
将数列{an}中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
③a66=
.请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式S(k)+
>
在x∈[
,
]上有解,求正整数k的取值范围.
查看习题详情和答案>>
①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
|
③a66=
2 |
5 |
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式S(k)+
1 |
k |
1-x2 |
x |
1 |
200 |
1 |
20 |
已知函数f(x)=
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
,(x∈R)的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
)>0.
查看习题详情和答案>>
4x |
x2+a |
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x | 0 | 0.1 | 0.2 | 0.5 | 0.8 | 1 | 1.2 | 1.5 | 1.8 | 2 | 4 | 6 | … |
y | 0 | 0.396 | 0.769 | 1.6 | 1.951 | 2 | 1.967 | 1.846 | 1.698 | 1.6 | 0.941 | 0.649 | … |
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
4x |
x2+a |
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
3 |
2 |
已知平面上的线段l及点P,任取l上一点Q,线段PQ长度的最小值称为点P到线段l的距离,记作d(P,l)
(1)求点P(1,1)到线段l:x-y-3=0(3≤x≤5)的距离d(P,l);
(2)设l是长为2的线段,求点的集合D={P|d(P,l)≤1}所表示的图形面积;
(3)写出到两条线段l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)},其中l1=AB,l2=CD,A,B,C,D是下列三组点中的一组.
对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分.
①A(1,3),B(1,0),C(-1,3),D(-1,0).
②A(1,3),B(1,0),C(-1,3),D(-1,-2).
③A(0,1),B(0,0),C(0,0),D(2,0). 查看习题详情和答案>>
(1)求点P(1,1)到线段l:x-y-3=0(3≤x≤5)的距离d(P,l);
(2)设l是长为2的线段,求点的集合D={P|d(P,l)≤1}所表示的图形面积;
(3)写出到两条线段l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)},其中l1=AB,l2=CD,A,B,C,D是下列三组点中的一组.
对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分.
①A(1,3),B(1,0),C(-1,3),D(-1,0).
②A(1,3),B(1,0),C(-1,3),D(-1,-2).
③A(0,1),B(0,0),C(0,0),D(2,0). 查看习题详情和答案>>