网址:http://m.1010jiajiao.com/timu_id_193041[举报]
已知函数 R).
(Ⅰ)若 ,求曲线
在点
处的的切线方程;
(Ⅱ)若 对任意
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,
.
因为切点为(
),
则
,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即
即可。
Ⅰ)当时,
.
,
因为切点为(),
则
,
所以在点()处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以
恒成立,
故在
上单调递增,
……12分
要使恒成立,则
,解得
.……15分
解法二:
……7分
(1)当时,
在
上恒成立,
故在
上单调递增,
即
.
……10分
(2)当时,令
,对称轴
,
则在
上单调递增,又
① 当,即
时,
在
上恒成立,
所以在
单调递增,
即
,不合题意,舍去
②当时,
,
不合题意,舍去 14分
综上所述:
查看习题详情和答案>>
(本小题满分12分)已知函数
(I)若函数在区间
上存在极值,求实数a的取值范围;
(II)当时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1),其定义域为
,则
令
,
则,
当时,
;当
时,
在(0,1)上单调递增,在
上单调递减,
即当时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式,即
令
(6分)
令,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当时,
恒成立,即
,
令,则
, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
查看习题详情和答案>>
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有
≤
成立,求实数
的最小值;
(Ⅲ)证明(
).
【解析】(1)解:
的定义域为
由,得
当x变化时,,
的变化情况如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
极小值 |
|
因此,在
处取得最小值,故由题意
,所以
(2)解:当时,取
,有
,故
时不合题意.当
时,令
,即
令,得
①当时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故不合题意.
综上,k的最小值为.
(3)证明:当n=1时,不等式左边==右边,所以不等式成立.
当时,
在(2)中取,得
,
从而
所以有
综上,,
查看习题详情和答案>>