网址:http://m.1010jiajiao.com/timu_id_192943[举报]
设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。
对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):
记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 对如下数表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)设数表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因为,
所以
(2) 不妨设.由题意得.又因为,所以,
于是,,
所以,当,且时,取得最大值1。
(3)对于给定的正整数t,任给数表如下,
… |
|||
… |
任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表
,并且,因此,不妨设,
且。
由得定义知,,
又因为
所以
所以,
对数表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
则且,
综上,对于所有的,的最大值为
查看习题详情和答案>>
[番茄花园1] 为了能更好地了解鲸的生活习性,某动物研究所在受伤的鲸身上安装了电子监测装置,从海岸放归点A处(如图所示)把它放归大海,并沿海岸线由西到东不停地对鲸进行了40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动)。然后又在观测站B处对鲸进行生活习性的详细观测。已知AB=15km,观测站B的观测半径为5km.
观测时刻t (分钟) |
跟踪观测点到放归点距离a(km) |
鲸位于跟踪观测点正北方向的距离b(km) |
10 |
1 |
1 |
20 |
2 |
|
30 |
3 |
|
40 |
4 |
2 |
(I)根据表中数据:(1)计算鲸沿海岸线方向运动的速度,(2)写出a、b满足的关系式,并画出鲸的运动路线简图;
(II)若鲸继续以(I)-(2)中的运行路线运动,则鲸经过多少分钟(从放归时计时),可进入前方观测站B的观测范围。()
[番茄花园1]18.
查看习题详情和答案>>仔细阅读下面问题的解法:
设A=[0, 1],若不等式21-x-a>0在A上有解,求实数a的取值范围。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上单调递减,f(x)max =f(0)=2. ∴实数a的取值范围为a<2.
研究学习以上问题的解法,请解决下面的问题:
(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);
(3)若B ={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。
查看习题详情和答案>>设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围。
解:由已知可得 a<21-x
令f(x)=21-x,∵不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值.
又f(x)在[0,1]上单调递减,f(x)max ="f(0)=2. " ∴实数a的取值范围为a<2.
研究学习以上问题的解法,请解决下面的问题:
(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);
(3)若B={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。
如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB
(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本试题主要考查了立体几何中的运用。
(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE为等腰三角形.
取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =.
连接FG,则FG∥EC,FG⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
连接AG,AG= 2 ,FG2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小为120°
查看习题详情和答案>>