摘要:.所以是直线与曲线的一个切点, ----10分所以直线l与曲线S相切且至少有两个切点,
网址:http://m.1010jiajiao.com/timu_id_192299[举报]
以下是关于圆锥曲线的四个命题:
①设A、B为两个定点,k为非零常数,若PA-PB=k,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线
-
=1与椭圆
+y2=1有相同的焦点;
④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.
其中真命题为
查看习题详情和答案>>
①设A、B为两个定点,k为非零常数,若PA-PB=k,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线
x2 |
25 |
y2 |
9 |
x2 |
35 |
④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.
其中真命题为
②③④
②③④
(写出所以真命题的序号).以下是关于圆锥曲线的四个命题:
①设A、B为两个定点,k为非零常数,若PA-PB=k,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线
-
=1与椭圆
+y2=1有相同的焦点;
④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.
其中真命题为______(写出所以真命题的序号).
查看习题详情和答案>>
①设A、B为两个定点,k为非零常数,若PA-PB=k,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线
x2 |
25 |
y2 |
9 |
x2 |
35 |
④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.
其中真命题为______(写出所以真命题的序号).
以下是关于圆锥曲线的四个命题:
①设A、B为两个定点,k为非零常数,若PA-PB=k,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线与椭圆有相同的焦点;
④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.
其中真命题为 (写出所以真命题的序号). 查看习题详情和答案>>
①设A、B为两个定点,k为非零常数,若PA-PB=k,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线与椭圆有相同的焦点;
④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.
其中真命题为 (写出所以真命题的序号). 查看习题详情和答案>>
以下五个命题中:
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
+
=1(a>b>0)上一点,F为它的一个焦点,则以PF为直径的圆与以长轴为直径的圆相切.
其中真命题的序号为
查看习题详情和答案>>
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
x2 |
a2 |
y2 |
b2 |
其中真命题的序号为
③④⑤
③④⑤
.(写出所有真命题的序号),,为常数,离心率为的双曲线:上的动点到两焦点的距离之和的最小值为,抛物线:的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线:(为负常数)上任意一点向抛物线引两条切线,切点分别为、,坐标原点恒在以为直径的圆内,求实数的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
第二问中,为,,,
故直线的方程为,即,
所以,同理可得:
借助于根与系数的关系得到即,是方程的两个不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
(Ⅱ)设为,,,
故直线的方程为,即,
所以,同理可得:,
即,是方程的两个不同的根,所以
由已知易得,即
查看习题详情和答案>>