网址:http://m.1010jiajiao.com/timu_id_183531[举报]
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点(,0),所以=,得.又因为m>1,所以,故直线的方程为
第二问中设,由,消去x,得,
则由,知<8,且有
由题意知O为的中点.由可知从而,设M是GH的中点,则M().
由题意可知,2|MO|<|GH|,得到范围
查看习题详情和答案>>
(1)求时的概率;
(2)记“函数在区间上是增函数”为事件A,求事件A的概率.
已知等比数列中,,且,公比,(1)求;(2)设,求数列的前项和
【解析】第一问,因为由题设可知
又 故
或,又由题设 从而
第二问中,
当时,,时
故时,
时,
分别讨论得到结论。
由题设可知
又 故
或,又由题设
从而……………………4分
(2)
当时,,时……………………6分
故时,……8分
时,
……………………10分
综上可得
查看习题详情和答案>>
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.
【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1. 第二问中,,由第一问中知道,然后利用裂项求和得到Tn.
解: (Ⅰ) 设:{an}的公差为d,
因为解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因为……………8分
查看习题详情和答案>>
“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名。”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植B.
(1)假设n=4,在第一大片水塘中,种植品种A的小片水塘的数目记为,求的分布列和数学期望;
(2)试验时每大片水塘分成8小片,即n=8,试验结束后得到品种A和品种B在每个小片水塘上的每亩产量(单位:kg/亩)如下表:
号码 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
品种A |
101 |
97 |
92 |
103 |
91 |
100 |
110 |
106 |
品种B |
115 |
107 |
112 |
108 |
111 |
120 |
110 |
113 |
分别求品种A和品种B的每亩产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
查看习题详情和答案>>