摘要:(Ⅱ)设以原点为顶点.为焦点的抛物线为.若过点的直线与相交于不同.的两点..求线段的中点的轨迹方程.
网址:http://m.1010jiajiao.com/timu_id_182667[举报]
,,为常数,离心率为的双曲线:上的动点到两焦点的距离之和的最小值为,抛物线:的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线:(为负常数)上任意一点向抛物线引两条切线,切点分别为、,坐标原点恒在以为直径的圆内,求实数的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
第二问中,为,,,
故直线的方程为,即,
所以,同理可得:
借助于根与系数的关系得到即,是方程的两个不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
(Ⅱ)设为,,,
故直线的方程为,即,
所以,同理可得:,
即,是方程的两个不同的根,所以
由已知易得,即
查看习题详情和答案>>
已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点,A点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设M(x,y)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x+2,-y).
(3)直线x+my+1=0与抛物线交于E,F两点,在抛物线上是否存在点N,使得△NEF为以EF为斜边的直角三角形.
查看习题详情和答案>>
(1)求该抛物线的方程;
(2)设M(x,y)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x+2,-y).
(3)直线x+my+1=0与抛物线交于E,F两点,在抛物线上是否存在点N,使得△NEF为以EF为斜边的直角三角形.
查看习题详情和答案>>
曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=,|AF2|=.
(I)求曲线C1和C2的方程;
(II)设点C是C2上一点,若|CF1|=|CF2|,求△CF1F2的面积.
(I)求曲线C1和C2的方程;
(II)设点C是C2上一点,若|CF1|=|CF2|,求△CF1F2的面积.