摘要:(四川省成都市高中毕业班摸底测试)与双曲线有共同的渐近线.且焦点在y轴上的双曲线的离心率为
网址:http://m.1010jiajiao.com/timu_id_182418[举报]
某普通高中共有教师360人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:
已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别是0.15、0.1.
(Ⅰ)求x,y,z的值;
(Ⅱ)为了调查研修效果,现从三个批次中按1:60的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?
(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.
查看习题详情和答案>>
第一批次 | 第二批次 | 第三批次 | |
女教师 | 86 | x | y |
男教师 | 94 | 66 | z |
(Ⅰ)求x,y,z的值;
(Ⅱ)为了调查研修效果,现从三个批次中按1:60的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?
(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.
为了调查高中学生是否喜欢数学与性别的关系,某班采取分层抽样的方法从2011届高一学生中随机抽出20名学生进行调查,具体情况如下表所示.
(Ⅰ)用独立性检验的方法分析有多大的把握认为本班学生是否喜欢数学与性别有关?
(参考公式和数据:
(1)k2=
,
(2)①当k2≤2.706时,可认为两个变量是没有关联的;②当k2>2.706时,有90%的把握判定两个变量有关联;③当k2>3.841时,有95%的把握判定两个变量有关联;④当k2>6.635时,有99%的把握判定两个变量有关联.)
(Ⅱ)若按下面的方法从这个20个人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:
①抽到号码是6的倍数的概率;
②抽到“无效序号(序号大于20)”的概率.
查看习题详情和答案>>
男 | 女 | |
喜欢数学 | 7 | 3 |
不喜欢数学 | 3 | 7 |
(参考公式和数据:
(1)k2=
n(ad-bc)2 |
(a+c)(b+d)(a+b)(c+d) |
(2)①当k2≤2.706时,可认为两个变量是没有关联的;②当k2>2.706时,有90%的把握判定两个变量有关联;③当k2>3.841时,有95%的把握判定两个变量有关联;④当k2>6.635时,有99%的把握判定两个变量有关联.)
(Ⅱ)若按下面的方法从这个20个人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:
①抽到号码是6的倍数的概率;
②抽到“无效序号(序号大于20)”的概率.
成都市2012年共有1万辆燃油型公交车.有关部门计划于2013年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:
(1)成都市在2019年应该投入多少辆电力型公交车?
(2)到哪一年底,电力型公交车的数量开始超过成都市公交车总量的三分之一?
查看习题详情和答案>>
(1)成都市在2019年应该投入多少辆电力型公交车?
(2)到哪一年底,电力型公交车的数量开始超过成都市公交车总量的三分之一?
某高中随机选取5名女学生,其身高和体重数据如下表所示
|
查看习题详情和答案>>