摘要:(1)在中,令得
网址:http://m.1010jiajiao.com/timu_id_181974[举报]
在中,满足,是边上的一点.
(Ⅰ)若,求向量与向量夹角的正弦值;
(Ⅱ)若,=m (m为正常数) 且是边上的三等分点.,求值;
(Ⅲ)若且求的最小值。
【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则
令=,得,又,则为所求
第二问因为,=m所以,
(1)当时,则=
(2)当时,则=
第三问中,解:设,因为,;
所以即于是得
从而
运用三角函数求解。
(Ⅰ)解:设向量与向量的夹角为,则
令=,得,又,则为所求……………2分
(Ⅱ)解:因为,=m所以,
(1)当时,则=;-2分
(2)当时,则=;--2分
(Ⅲ)解:设,因为,;
所以即于是得
从而---2分
==
=…………………………………2分
令,则,则函数,在递减,在上递增,所以从而当时,
查看习题详情和答案>>
在中,已知 ,面积,
(1)求的三边的长;
(2)设是(含边界)内的一点,到三边的距离分别是
①写出所满足的等量关系;
②利用线性规划相关知识求出的取值范围.
【解析】第一问中利用设中角所对边分别为
由得
又由得即
又由得即
又 又得
即的三边长
第二问中,①得
故
②
令依题意有
作图,然后结合区域得到最值。
查看习题详情和答案>>
在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
=x
,
=y
.
(1)求证:x与y的关系为y=
;
(2)设f(x)=
,定义函数F(x)=
-1(0<x≤1),点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
的等比数列,O为原点,令
=
+
+…+
,是否存在点Q(1,m),使得
⊥
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.
查看习题详情和答案>>
OM |
OA |
ON |
OB |
(1)求证:x与y的关系为y=
x |
x+1 |
(2)设f(x)=
x |
x+1 |
1 |
f(x) |
1 |
2 |
OP |
OP1 |
OP2 |
OPn |
OP |
OQ |
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1 |
2 |