摘要:因为bn?bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)=-5?2n+4?2n=-2n<0,
网址:http://m.1010jiajiao.com/timu_id_178788[举报]
在数列{an}中,已知a1=
,
=
,bn+2=3log
an(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
查看习题详情和答案>>
1 |
4 |
an+1 |
an |
1 |
4 |
1 |
4 |
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
已知二次函数f(x)=x2+ax+c,满足不等式f(x)<0的解集是(-2,0),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若点(an,an+1)(n∈N*)在函数f(x)的图象上,且a1=99,令bn=lg(1+an),
①求证:数列{bn}为等比数列;
②令cn=nbn,数列{cn}的前n项和为Sn,是否存在正实数k使得不等式kn2bn>Sn+bn+2-2对任意n∈N*的恒成立?若存在,求出k的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
(Ⅰ)求f(x)的解析式;
(Ⅱ)若点(an,an+1)(n∈N*)在函数f(x)的图象上,且a1=99,令bn=lg(1+an),
①求证:数列{bn}为等比数列;
②令cn=nbn,数列{cn}的前n项和为Sn,是否存在正实数k使得不等式kn2bn>Sn+bn+2-2对任意n∈N*的恒成立?若存在,求出k的取值范围;若不存在,请说明理由.